Structure theory for a class of grade 3 homogeneous ideals defining type 2 compressed rings

نویسندگان

چکیده

Let R=k[x,y,z] be a standard graded 3-variable polynomial ring, where k denotes any field. We study grade 3 homogeneous ideals I⊆R defining compressed rings with socle k(−s)⊕k(−2s+1), s≥3 is some integer. prove that all such are obtained by trimming process introduced Christensen, Veliche, and Weyman (J. Commut. Algebra 11:3 (2019), 325–339). also construct general resolution for which minimal in sufficiently generic cases. Using this resolution, we give bounds on the number of generators μ(I) I depending only s; moreover, show these sharp constructing attaining upper lower s≥3. Finally, Tor-algebra structure R∕I. It shown have Tor algebra class G(r) s≤r≤2s−1. Furthermore, produce r s≤r≤2s−1 Soc(R∕I)=k(−s)⊕k(−2s+1) R∕I has G(r), partially answering question realizability posed Avramov Pure Appl. 216:11 (2012), 2489–2506).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

Structure Theory for a Class of Grade Four Gorenstein Ideals

An ideal / in a commutative noetherian ring R is a Gorenstein ideal of grade g if pdR(R/I) = grade I = g and the canonical module HxtsR(R/I, R) is cyclic. Serre showed that if g = 2 then / is a complete intersection, and Buchsbaum and Eisenbud proved a structure theorem for the case g = 3. We present generic resolutions for a class of Gorenstein ideals of grade 4, and we illustrate the structur...

متن کامل

a class of artinian local rings of homogeneous type

‎let $i$ be an ideal in a regular local ring $(r,n)$‎, ‎we will find‎ ‎bounds on the first and the last betti numbers of‎ ‎$(a,m)=(r/i,n/i)$‎. ‎if $a$ is an artinian ring of the embedding‎ ‎codimension $h$‎, ‎$i$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $a$ a {it $t-$extended stretched local ring}‎. ‎this class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

Pseudoprime L-Ideals in a Class of F-Rings

In a commutative f-ring, an 1-ideal I is called pseudoprime if ab = 0 implies a E I or b E I, and is called square dominated if for every a E I, lal < x2 for some x E A such that x2 E I. Several characterizations of pseudoprime 1-ideals are given in the class of commutative semiprime frings in which minimal prime 1-ideals are square dominated. It is shown that the hypothesis imposed on the f-ri...

متن کامل

A class of J-quasipolar rings

In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2022

ISSN: ['1939-0807', '1939-2346']

DOI: https://doi.org/10.1216/jca.2022.14.115